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The key role of a constra~int on the length of a designed body is demonstrated by taking the example of symmetric profiles which 
achieve minimum wave drag in a supersonic flow. As a result of this an optimal body can contain a rear-base which emerges as 
a section of a boundary extremum. By assumption, there is no gas flow around the rear base, and the "base" pressurep + which 
acts on them is specified and is independent of the form of the required contour and the ordinate y. When designing profiles, 
in addition to their length, it is customary to specify the area of the longitudinal section F and other isoperimetric conditions. 
Even whenp + = 0, which, naturally, does not occur, it is now necessary to introduce a rear base for extremely small F. When 
p+ > 0, a base appears earlier still. The replacement of the optimal contours with a rear base by a "pseudo-optimal" contours 
with a sharp edge leads to an increase in drag of tens and hundreds of percent. Special attention has been paid to cases in which 
p+, due to heat supply in the base domain, for example, exceeds the free-stream pressure. Here, there is always a rear base and, 
when F < F0, where F0 depends onp+/p., the form of the optimal contours is the same as in the problem without a specified F. 
In this case, the optimal e3nfiguration is a hollow or partially hollow "cheekmark". © 1998 Elsevier Science Ltd. All fights reserved. 

The existence of a front face in the case of axially symmetric forebodies of minimum drag had already 
been established by Newton. The need for such a face in the case of sufficiently thick foresections of 
two-dimensional bodies has been demonstrated in [1]. In the case of the optimal forebodies of fixed 
volume, a constraint on the maximum magnitude of the axial coordinate (if this constant if not imposed, 
a constraint on its nfinimum magnitude and, consequently, a constraint on the length of the forebody) 
leads to the appearance of a face of a different type: a front part of the specified body with a spike 
projecting from it [2]. In the design of optimal nozzles and afterbodies, the rear bases, which are sections 
of a boundary extremum, were introduced in [3]. 

While in the design of fore- and afterbodies and nozzles, it became customary long ago for front 
faces and rear bases to be an accessory of the optimal contours, this was far from being the case in 
problems concerned with the design of closed bodies. Up to the present in such problems, rear bases, 
if they were introduced at all, were introduced as physically expedient, rather than as sections of a 
boundary extremum. In this respect, the paper [5] and the collection of papers [6] are significant. The 
greatest advance in this direction was perhaps made in the first of these two publications. In [5], in the 
optimal design of thin symmetric profiles within the framework of the linear theory of supersonic flows, 
the size of a rear base and the condition for its appearance were obtained from the solution of a varia- 
tional problem. However, the conditions for the optimality of the rear base as a section of a boundary 
extremum were not written out or discussed, and its introduction following the predecessors cited in 
[5] was explained by physical arguments. In the paper [7] from the collection [6], while reference is 
made to [5], the po'ssibility of the appearance of a rear base in the same problem is simply ignored. 

In other papers in [6], a rear base appeared in the case of bodies which achieve a minimum wave 
drag coefficient Cx within the framework of Newton's drag law. In this case, the pressurep + which acts 
on the shaded part of the body was taken as being equal to p** in accordance with Newton's formula 
without any stipulations. Simultaneously, there was no mention anywhere of the very existence of a rear 
base which, together with the absence of a term with the pressure p÷ = p** acting on the base in the 
formula for Cx, almost completely masked its presence. As a result, it is difficult for the reader to note 
that the discussion is about the whole body and not about its forebody. In the case of such masking of 
the existence of rear bases, they cannot be discussed either as sections of a boundary extremum or even 
regarding their phy:sical advisability. Under such conditions, errors are unavoidable, by virtue of which 
a rear base appeared when there are no constraints on the body length as in [8]. 

In the examples we have discussed above, faces and bases were present in variational problems of 
supersonic aerodynamics. Isolated from these, there are problems concerned with the design of plane 
and axially symmetric bodies, of specified length and area F or volume in a subsonic flow of an ideal 
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(inviseid and non-heat-conducting) gas with a maximum critical Mach number M*. Wheh M** ~< M*, 
their Cx = 0. It has been established using comparison theorems [9, 10] that the contours of such bodies 
consist of leading face and rear base, and a sonic streamline which joins them. These face and base are 
segments of a boundary extremum which appear due to a constraint on the length. Within the framework 
of a model of unseparated flow around bodies, the pressure and the other parameters on them are 
variable and are found together with the solution of the whole design problem. 

The following order of presentation is adopted below. A variational problem, which is subsequently 
solved, is formulated using certain local models in Section 1. In Section 2, the necessary optimality 
conditions are obtained for this problem, including the optimality conditions of the rear base as a segment 
of a boundary extremum. The conditions of Section 2 are used in Section 3 to design profiles in the 
case of a single isoperimetric condition, a specified area for the longitudinal cross-section. Here, the 
advantages of optimal bodies with rear base, which are designed using local models, is confirmed by 
computations in the approximation of the Euler equations. In Section 4, bodies of the shape of hollow 
and partially hollow "check mark" and bodies with screens, which are optimal whenp ÷ > p~. and have 
not been considered earlier, are constructed. In Section 5, the errors and inaccuracies in a number of 
papers, where the authors also introduced rear bases when constructing optimal bodies, are corrected. 
In concluding (Section 6), arguments are presented concerning the importance of rear bases when 
constructing minimum drag bodies in a flow of a viscous gas (or liquid). 

1. F O R M U L A T I O N  O F  T H E  V A R I A T I O N A L  P R O B L E M  

Suppose that x andy are Cartesian coordinates. The x axis is directed along the vector of the supersonic 
free-stream velocity V**, the origin of the system of coordinates is associated with the leading point of 
the body i, and the specified length of the body I is adopted as the scale of length. Then, at the end 
point f o r  the upper contour of a body which is symmetrical about thex axis and has a fine-pointed rear 
edge (Fig. la), x f  = 1, y f  = 0. Henceforth subscripts i . . . .  are assigned to parameters at the points 
i . . . . .  and oo to the free-stream parameters. Similarly (Fig. lb), when there is a rear base f ' f ,  we have 
x -- 1 in this base. It has already been mentioned that a base pressurep ÷, which is independent of the 
contour shape if* and they ordinate, acts on the rear base. Ifp ÷ and the pressurep at any point i f  ° are 
referred to p~V 2, where p is the gas density and V = I V l, then, for the wave drag coefficient, we have 

C x = p d y  - p + y i  o (1.1) 
5~=0 

with a pressure on the profile, p, which depends on the contour shape i f  °. Henceforth, CI and other 
integral characteristics are defined for a half of the profile. 

For the purposes of this paper it is sufficient to restrict the treatment to local models of the flow 
around a body. In the case of such models, the pressure at any point of the contour i f  ° for a specified 
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free stream is a knovm function of the angle a~ between the tangent to the body and the x axis, that is, 
p = p(O). Ifx = x(y) is the equation of if* andx" = dx/dy, then, according to the definition of 

E = x" - o t t o  = 0 (1 .2)  

When Newton's d:rag, which holds when a~ ~< ~/2, is used, in accordance with the method which has 
been adopted for reducing the pressure to dimensionless form, we have 

p(O)  = p** + 1 / 2(1 + s ign O) sin 2 O (1.3) 

In the case of a p,erfect gas p** = 1/(xM2), where x is the adiabatic exponent. The constraint 0 
n/Z precludes recesses, by the use of which it should be possible to reduce Cx to zero, on the windward 
side of the body. 

another local model is obtained as a combination of Newton's drag law (1.3) when 0 ~ O ~ n/Z and 
the solution for the simple rarefaction wave adjoining the uniform free stream when O ~< 0 

. . . .  fp** +sin2 0 when 0---< 0---< ~ / 2 (1.4) 
p tv ) - ]  P(O) when 0~< 0 

P(O) is determined using the formulae for a simple wave. If s is the specific entropy of the gas, h = 
h(p, s), the specific enthalpy, is a known function ofp and s, H is the total enthalpy and a = arcsin (l/M) 
is the Mach angle, then such a simple wave is described by the relations [11] 

2h[P(O), s**]+V 2 =2H= (x-1)M~ +1, - =  
P s 

1(0, p)--O- p-S 'A(p) ="-2"+ct+~'~-"Z~-I arctgt~x"+~ctg°cJ=l" =0 (1.5) 

ctgo~ = a--F' 7:t Js: 2J, 
pV 2 _ pV 2 

A(P)=a/M-5_I 

Here I is the Riemann invariant which corresponds to the C- characteristics; the second formulae 
for 2H and I are written for a perfect gas, and p and a, which are expressed in terms of the derivatives 
of h and h, are knowri functions o fp  and s. Relations (1.5) gives the implicit dependence p = P(0). 
This dependence is a one-to-one dependence since, by virtue of the formula for 

aP(o) 
Po m - - = A ( p ) ~  0 (1.6) 

dO 

where the equality only applies in the case of M ---> ~ when V 2 ---> 2/-/and p ---> 0. According to (1.5), 
P(0) = p** and, consequently, the functionp(0), is defined by equalities (1.4) when 0 --- 0 is continuous 
with discontinuous first and higher derivatives with respect to 0. In accordance with inequality (1,6), 
p(O) < p.. in the case of negative O, which ensures the somewhat higher accuracy of model (1.4) 
compared with the initial Newtonian model (1.3). In obtaining formulae (1.5), no account has been 
taken of the non-isentropic character of the flow and the fact that the invariant I differs from I .  = 0. 
If the bow-wave, which is detached from the sharpened leading edge of the body, is weak, then, as is 
well known [11, 12], the increments in s and I on passing across it are quantities of the order of the 
cube of the pressure increment. Therefore, in the case of comparatively slender bodies as well as in 
the case of low supersonic free-stream Mach numbers (subject to the condition that the flow downstream 
of the low-wave is supersonic), the local model 

p(O) =P(O) (1.7) 

2 o with P(0) from (1.5) is valid with an accuracy up to 0 inclusive for the whole contour i f .  The lineariza- 
tion (1.5)-(1.7), which presupposes that 02 is small, also gives the well-known formula of linear theory 
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a) 
(1.8) P = P ~ + ~ - I  

but which is now only valid up to a~ inclusive. 
Here, as everywhere above, the pressure has been made dimensionless by reference to p**V~. 
If only the length of the body is specified andp ÷ ~<po., then the solution of the problem of constructing 

the contour if, which reaches the minimum Cx is trivial. In the approximation of any of the local models 
which have been described above, as well as within the framework of the complete system of Euler 
equations, it is given by the segment 0 ~< x ~< 1 of the x axis, that is, the body of minimum wave drag 
is a plate with Cx = O. 

Suppose that, together with the specification of the length, the body being profiled must also 
satisfy N isoperimetric conditions, in particular, of a geometric nature, which are written in the 
form 

Fn= S On(P, ag, x, y )dy-  (pn(p+, x, y)dy, n = l  . . . . .  N (1.9) 
Yi=0 y f =O 

Here, P~ are specified constants and (I¢' and (pn are known functions of their arguments. Of course, 
q)n may also depend on ~ but, for the purposes of this investigation, it is sufficient to restrict the treatment 

n + to q) (p , x, y). What is far more important is that, in (1.9) and also in (1.1), it is necessary to include 
integrals over a rear base f°fwhieh is possible but is not always present in the optimal configuration, 
and, moreover, x should not be replaced by unity when writing the isoperimetric conditions in such 
integrals. 

2. NECESSARY C O N D I T I O N S  FOR O P T I M A L I T Y  

In order to obtain the necessary conditions for optimality, we construct the Lagrange functional 

I =  I [O(p, O, x, y, I~)+XEldy- (p(p+, x, y, ~)dy 
yi=O yf=O 

N 
O(p, O, x, y, I ~ ) = p ( O ) + ~  I.tnO"(p, O, x, y) 

n=l 

N 

(p(p+, x, y, I~)=p++ E lXntPn(P +, x, y) 
n=l 

in which Ix n are constant and 7L = 7~(y) are variable undetermined Lagrange multipliers, I.t is an 
N-dimensional vector with components ~t n and E is the left-hand side of Eq. (1.2). We shall call any 
contour, which gives a body of the specified length with a rear baseff f  or without it and which satisfies 
conditions (1.2) and (1.9), a permissible contour. In the case of a variation when the initial contour 
(which is not necessarily the optimal) and the varied contour generatrix are permissible (other ways of 
variation are, naturally, not considered), the variations of I and Cx are identical. In the common case, 
the optimal contour of a body of fixed length may include not only a rear base but also a front face 
which must be stipulated when writing out the expressions for Cx, conditions (1.9) and the Lagrange 
functional. 

Taking the above and the expressions for I and E into account, for a permissible variation of a contour 
/]'which is sharpened at point i and either is sharpened at pointf  or has a rear base, we have 

I° I° I A +&~dY (2.1) 5C~, = 81 = X Ax/. + r Ay/. + ~/* (AXS, x + A°80)dy - y:* 
yi =O y f =O 

Here, Axf° and Ayp are the increments in the coordinates of the pointf  ° and, in the absence of a rear 
base, whenf  ° - f ,  of the point f; fix and 50 are the variations, that is, the increments ofx and a~ for the 

./* ./* x ~ + varied and the initial contours in the case of a fixed ordinatey;X , Y. ,A ,A andA are known functions 
of x, y, p = p(~), O, p+ and the Lagrange multipliers at the corresponding points. Henceforth, f°  is 
replaced by f in  the case of bodies without a rear base. By virtue of this, the last integral in (2.1) is not 
present in the case of such bodies. 
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On varying an~ oermissible contour, using an arbitrary choice of the variable Lagrange multiplier X, 
. r ' . °  . . • 0 • • • the coefficientA" m i f  can vanish. When account is taken of the expression forA , this gives the finite 

equation 

for determining ~. in which po = dp/d~ is found in accordance with the local model employed. 
After this, only terms which are proportional to ~oc F and Ayfo and the integrals from the variations 

in ~ in i f  ° andf°fremain in (2.1). It is clear that the integral over fOfis in (2.1) only if the initial contour 
has a rear base. When there are N isoperimetric conditions, the above-mentioned increments and 
variations are not inclependent. Their independence is achieved by introducing N"compensating" points 
k~ in the segment i f  ° of the contour of the body and by determining the constant Lagrange multipliers 
g" . . . . .  g~" from the linear system obtained, if one puts, at the point kn 

A " - ~ - ~ . ' = 0 ,  ~ =  ~ p.o.y 

with the derivative which has been found for the initial contour by differentiation of the right-hand 
side of (2.2). 

Satisfying equalities (2.3) for the present just at the points kn enables one to preserve the magnitude 
of all of the functionals specified in (1.9) when varyingx in the neighbourhood of any point of the contour 
i f  due to the simultaneous variation in x in small neighbourhoods of the points kn. Due to the choice 
of ~, a variation inx in small neighbourhoods of the points k~ introduces a contribution into the variation 
of Cx of a higher order than ~ at the other points i f  and, also, into Ax/~ and Ay/~. Hence, ~c, Ax r and 
Ayf. may now be considered as being independent. Consequently, if the segment of the contour i f  0, in 
which the ~c are arbitrary, realizes a minimum in Cx then equality (2.3) must be satisfied not only at 
the compensating points but everywhere in i f  ° . 

If the optimal body has a rear base, the permissible Ay F are arbitrary. When there is no rear base, 
the pointsfandf  ° coincide and the permissible Ayf. 1> 0. In addition, Ax/. ~< 0 in both cases. If the contour 
i f° f  is optimal, then ~Tx I> 0 for any permissible variation. When account is taken of the possible signs 
of Ayf, and Ax/~, the optimality conditions, which must be satisfied at the point f°, which coincides or 
does not coincide with f, reduce to the two inequalities 

Y f °  E ( ~  -- (p -- ~L ctg ~.~)f. ~ O, X f °  .~- X fo ~ 0 

After eliminating 7L using Eq. (2.2), they take the form 

[ ~ - 9 + ( ~  o +Oppo)s inOcos t~] f .  >-- 0 
(2.4) 

(Do + ~pPo)fo sin2 Of, ~ 0 

where the quantities, apart from ~, are the limiting values on approaching the point f° from the left 
along i f  ° and 9F = ~0(p*, 1, YF, I*). 

The violation of the first inequality of (2.4) at the pointf  ° -= f o r  a body without a rear base indicates 
the need for its imroduction. In the case of bodies without a rear base, satisfaction of the second 
inequality of (2.4) indicates that Cx increases as the length of the body decreases. In the case of bodies 
with a rear base, the same inequality is the condition that the rear base f ° f  is a segment of a boundary 
extremum. On the rear base itself, the permissible ~ ~< 0. Hence, the further condition of the fact that 
the rear base is a segment of a boundary extremum with respect to x reduces to the inequality 

A + = ~0x(p+, 1,y, v0 ~> 0 (2.5) 

On eliminating X from (2.2) and (2.3), we arrive at an equation for determining the optimal contour 
(OC), that is, the fimction x = x0,) 

[(Do + ~pPo)  sin2 0]' + ~x  = 0 (2.6) 

The second order of this equation makes it possible (at least, in principle) to construct the segment 
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i f  ° of the OC which, starting from a point i with coordinates x = y = 0, gives a minimum of Cx. In this 
case, the second arbitrary parameter for a body with a rear base is used, in the case of which the required 
contour should arrive at the point f ° .  . - fwi th  coordinates x .  f =. 1, yf =. 0.. It has already, been noted that 
the contour which has been designed is only optimal when the mequahtles (2.4) are satisfied at the point 
f. If, however, the first inequality of (2.4) is violated in the case of the contour then the OC contains a 
rear base, the size of which, that is, yf°, is defined by the condition 

[q)-~O+ (q) 0 +~ppo)sinOcosO]/ ,  = 0 (2.7) 

On the other hand, if the second inequality of (2.4) is violated when the first is satisfied, then the 
optimal length of a body without a rear base, that is, the quantityxf < 1, is defined, when yf  = 0, by the 
condition 

(~0 +~pPo) f  sin2 O / = 0  (2.8) 

Although, under these conditions, one of the coordinates of a terminal point of the segment i f  ° or 
of the whole of the OC if, which are determined by Eq. (2.6), is unknown and is found using conditions 
(2.7) and (2.8), the second order of Eq. (2.6) ensures the arrival of the initial segment or of the whole 
of the required contour, respectively, at the point f ° orfi Finally, the choice of the constant undetermined 
Lagrange multipliers which occur in Eq. (2.6), at least, in principle, enables all of the isoperimetric 
conditions (1.9) to be satisfied. 

3. THE O P T I M A L  P R O F I L E  FOR A S P E C I F I E D  AREA 
OF THE L O N G I T U D I N A L  C R O S S - S E C T I O N  

As an example, we consider a problem with a single isoperimetric condition, that is, a specified area 
of the longitudinal cross-section referred to the square of the length of the body 

r/* r/- 
F =  ~ ( 1 - x ) d y -  [ ( l - x ) d y  (3.1) 

yl =0 Yl =0 

We note, in passing, that the area F simultaneously determines the volume per unit width of the profile. 
Although the second term in (3.1) is equal to zero in the rear base where x = 1, in accordance with 

what has been said previously it is included in the formula for F in order to take account of the 
contribution to ~ x  from a variation of the rear base in which the permissible & ~< 0. In the example 
under consideration, we have 

~ = p(O)+~t(1- x), ~0 = p+ +B (1 -x )  (3.2) 

with a unique constant Lagrange multiplier Ix. Substituting (3.2) into Eq. (2.6), we find that the segment 
i f  ° of the OC is defined by the equation 

(Po sin2 0) '  = B (3.3) 

In the case of a body without a rear base, conditions (2.4) take the form 

[p(O)- p+ + Po sin OcosO]f ~ O, (Po sin20)f ~ 0 (3.4) 

In the local models considered above, the second inequality is always satisfied and becomes an equality 
in the case of the Newton model (1.3) when Of ~< 0, and in the case of the other models only when 
oi=0. 

Condition (2.7), which determines the optimal ordinate yf° > 0 when the first inequality of (3.4) is 
violated in the case of a body without a rear base, is written as 

[p(O)-  p+ + Po sin OcosO]/. = 0 (3.5) 

Finally, for a body with a rear base, the second inequality from (3.4) with f replaced by f°  together 
with the inequality obtained from (2.5) for (3.1) 
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. ~< 0 (3.6) 

are necessary conditions for the rear base to be a segment of a boundary extremum with respect to x. 
In the ease of the Newton model (1.3), Eq. (3.3), which determines the shape of ir,, takes the form 

[(1 + sign O)cos 0 sin 3 O]' = (3.7) 

It immediately follows from this that, within the framework of this model, the OC cannot contain a 
leeward segment with negative O > -It/2 which is different from the rear base. Hence, when F > 0, the 
ordinateyr* is positiw~,p = p** and the optimal body necessarily contains a rear base. The latter is clear, 
since, by virtue of (1.3), Or, I> 0 on the leeward side of the contour independent of the magnitude of 
O, while, on the windward side, p is greater, the greater the value of 0. Hence, within the framework 
of model (1.3), it is necessary to make the length of the windward side of the contour alongx as large 
as possible (xr, = 1)which automatically reduces O andp  on it. 

In fact, this result was obtained in those papers of the collection [6] in which plane and axially symmetric bodies 
of minimum drag were constructed within the framework of Newton's formula in cases where the half-height of 
a symmetric plane body or the radius of a body of revolution were not among the specified geometric characteristics. 
It is true, as has already been noted, that in the above-mentioned papers, having introduced a rear base, not only 
was it not shown that the rear base appears as a segment of a boundary extremum with respect to x but, in general, 
nothing was said about its existence. 

Within the framework of model (1.3), the inequalityp ÷ < p** does not make sense which, incidentally, 
is also in agreement with condition (3.5) which, when O F I> 0, can only be satisfied for p+ I> p**. It 
has already been mentioned that, in [6],p ÷ has tacitly been put equal top**. Unlike this, it is assumed 
below that p+ /> p**. The latter may be the result of special effects of the type of heat supply to the 
base region and p+ :> p**, when M.. -> 1, for comparatively thick bodies and when there are no such 
effects [13]. Condition (3.5), which, whenp  ÷ >t p**, yields a non-negative Of., takes the form, forp(O) 
from (1.3) 

' ~ ; in2Ofo( l+2s in2Ocos20) f .=N=p+-p**= -1  xM 2 (3.8) 

where the second expression for N refers to a perfect gas. 
Solving Eq. (3.8) tor qp ---- tg O F, we find that 

qs* = t 1 + .,~-"~-~ J 
(3.9) 

As in [2], Eq. (3.7) i,i integrated after which the parametric representation 

+,r l_q o 

+ 2r q3 
Y=YS* 7L(I ~q2)2 

1 _q2 ] 

q~o. 
(1 +q~*) 2 ] 

(3.10) 

is obtained for iff. 
Here, g ~ 0 by virtue of (3.6), the parameter q = tg 0 decreases monotonically from qi > qp to ql* from (3.9), 

qi is expressed in terms of IX and qp from the first equality of (3.10) withxi = 0 and, after this, the multiplier g is 
chosen in such a manner that the area of the longitudinal cross-section found using formulae (3.10) is equal to 
the specified magnitude ofF. The segment of the contour iff is convex and, moreover, according to [2], q ~< 1. If 
qi turns out to be greater than unity, then the OC contains two faces, x = 1 and x = 0, which corresponds to extremely 
large F. 

In the case of the combined model (1.4)-(1.6), the windward segment of a contour with O t> 0 is 
defined, as in the case of model (1.3), by Eq. (3.7). The leeward segment with O ~< 0 which is smoothly 
joined to it at the point O = 0, if it exists, satisfies the equation 
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(pV 2 tgasin 2 O)' = Ix (3.11) 

which, by virtue of (1.5) and (1.6) as well as (3.7), is a second-order differential equation in x = x(y). 
In the case of bodies with a sharp rear edge, where Of <~ 0, the inequalities 

(p -p+ +pV 2 tgas inOcosO)f  ~> 0, (pV 2 tgasin 20 ) f  ~> 0 (3.12) 

must now be satisfied. 
The second of these inequalities is always satisfied and becomes an equality only when Of = 0. Unlike 

this, the first inequality can be violated even in the case when p÷ = 0, when, for a perfect gas 

~¢M 2 sin 20 1 
(p -p+ +pV2tgasinOcosO)f = p! 1+ 2 " ~ - ~  Jf  

The second term in brackets, being negative in the case of a body without a rear base, increases in 
modulus as the Mach number Me and the area F increase. Ultimately, its modulus necessarily becomes + 
greater than unity. Whenp  > 0, the first condition in (3.12) is violated even earlier. From this instant 
yr. will be determined by the condition 

(p - p+ + pV 2 tgasin Ocos O)f. = 0 (3.13) 

and the conditions for f ° f  to be a segment of a boundary extremum with respect to x reduce to the 
second equality of (3.12), with f °  instead of f ,  and to inequality (3.6). The model (1.7) differs from 
the combined model only in the fact that, in this model, Eq. (3.11) also determines the windward part 
of the contour. Finally, it can be shown that, in this problem, conditions (3.12) and (3.13) are identical 
to the necessary conditions for Cx to be a minimum which are obtained in the approximation of the 
Euler equations using a local variation [4] of the optimal contour in a small neighbourhood of the points 
f a n d f  °. 

In the case of a perfect gas, Eq. (3.11), by virtue of the equalities (1.5) and (1.6), takes the form 

dZy Ixctga ~-1 4 = 1 +  
dx 2 - Y = 2pV 2 cos 4 a 

4 ( 1 - M Z ) + ( x  + 1)M 4 
4 ctg 3 a 

tgO (3.14) 

There is an expression which is linear with respect tox andx'  and non-linear with respect to 0 in the 
integral over if* of the Lagrange functional in the problem with a specified F. Hence, in model (1.7), 
for example, when terms of the second order in 5Cx are retained, a single term is added 

I 
8C x . . . .  + ~ p V2~ tg a(80 ) 2dr 

0 

Consequently, a further necessary condition for Cx to be a minimum in this model has the form 

;~>0, x¢[O,1] (3.15) 

By virtue of (3.14) and (3.15), the curvature of the OC does not change sign and is equal to zero 
everywhere when IX = 0. In the case of optimal bodies without a rear base, it follows from this that, 
when F ;~ 0, they are convex, since in the opposite case (y I-- 0), a contour lying above thex axis cannot 
join the points i andfwhich  belong to this axis. It is seen from this that negative values of Ix correspond 
to such bodies. For optimal bodies with a rear base, point i can be joined to the point f* at which 
~ C  = 1 while yf* > 0 both by a convex curve and a concave curve. The fact that the segment if ° of the 

is also convex here in model (1.7) and a straight line when Ix = 0 follows from (3.15) and (3.6). 
Hence, the necessary condition for the rear base to be a segment of a boundary extremum with respect 
to x plays an exceedingly important role here. 

For I.t < 0, when the angle 0 decreases monotonically on moving from i to f  ° or to f, it is convenient, as in model 
(1.3), to take q = tg O as the independent variable. In this case, Eq. (3.14) is replaced by two first-order equations 
which are integrated in quadratures 
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dx 2 p V  2 cos 4 O r~, dy _ 
" ~  = f ( q )  = !1 ctgot ~qq - q f (q )  

Everything that has been said above for the leeward part (with ~ < 0) of the segment if" of the combined model 
is valid for the whole of the segment if* of the OC in model (1.7). 

The equations and conditions, which determine the OC in the approximation of the linear model 
(1.8) and the equations and conditions (3.11)-(3.15) are obtained practically directly by linearization 
under the assumption that I O I <~ 1. In this case, the linearized equation (3.14), after integration, gives 
the equation of the contour if or if" in the form of a parabola 

y = a x +  bx 2 (3.16) 

with constants a and b which are still to be determined. When there is no rear base, this equation, which 
was obtained for the first time by Drougge [7], defines a parabola which is symmetric with respect to 
x = 0.5 with coefficients a = -b = 6F. It has already been shown by Chapman in [5] that the parabola 
(3.16) with such value, s o f a  and b, that is, the solution [7] without a rear base, only makes Cx a minimum 
for very small F even whenp  ÷ = 0. For this reason, we shall refer to it as being "pseudo-optimal". The 
conditions under which it, nevertheless, ensures a minimum value of Cx are obtained by linearization 
of (3.12) and reduce to satisfying the two inequalities 

P+ 12xM2 / YI =p** 1 F ~ 0  
p,,,-p+ 4 ~ - ~ - 1  P® 

~} = 36F 2 >~ 0 
(3.17) 

The second inequality of (3.17) is always satisfied. The first, however, as has already been noted, is 
violated for extremely small/7. For instance, the minimum value of the coefficient ofF,  which is obtained 
when M 2 = 2, is equal to 24x. When M** = ~/2 and × = 1.4, according to [14], p÷/p~ -~ 0.5. It follows 
from this that, in the case of such M .  and ×, the first inequality of (3.17) is already violated when 
F t> 0.015, where the area has been made dimensionless by reference to the square of the length. At 
smaller and larger M~., it is violated in the case of even more slender profiles. Of course, a rear base, 
as was done for the lirst time in [5], can also be introduced within the framework of a linear model. 
The condition, defining the optimal size of the rear base, is obtained by linearizing (3.13) and, in the 
case of a perfect gas, reduces to the formula 

(3.18) 

As before, the segment if ° of the OC remains the parabola (3.16). However, now 

a = 3F - 0,5L, b = 0,75(L - 2F) (3.19) 

Within the framework of the linear model, the optimal body has a rear base if, as follows from (3.17), 
the specified non-negative value of F exceeds the minimum value Fm = -L/6. 

As in the case of the Newtonian model, forp  + I> p~ when Fm ~< 0, the optimal body has a rear base 
for any F > 0. 

Suppose tha tp  ÷ = p**. Then, by virtue of (3.18) and (3.19), L -- 0 and a = -2b = 3F. Then, using 
formulae (1.1), (1.8) and (3.16), we find that ~/(M2~ - 1)Cx = 3F 2 for the OC with a rear base in this 
ease. A similar calculation in the case of a pseudo-optimal body without a rear base for which a = -b  
= 6F gives x/(M2** - 1)Cx = 12F 2 in the case of the same contribution from its windward and leeward 
parts. Hence, the Cx values for pseudo-optimal bodies in the case of fixed F and p+ = p** are greater 
by a factor of four than the Cx values for optimal bodies with a rear base. It is interesting that, if Cx is 
calculated for the same bodies using a linearized version of Newton's formula, the Cx values for a body 
without a rear base which are obtained are also four times greater. This result is obtained in spite of 
the different role of the leeward part of the body in the linear and the Newtonian models. According 
to (1.3), the whole of the contribution to Cx is solely made by the windward part of the body. 
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In the case o f  thin bodies, however, it is significant that  the friction drag, which exceeds the wave 
drag or  is comparable  with it, almost independent  o f  the form of  the contour.  Only its length is important  
and, in such cases, it is practically equal  to the length of  the body. Hence,  the reduct ion in the drag of  
slender bodies with a rear  base which has been found, as well as the results in [5], that were also calculated 
using the formulae  o f  the linear theory, may turn out,  in fact, to be not  so impressive. The  profiling of  
quite thick bodies has been  carr ied out  taking account  of  these considerations.  In this case al though 
the design itself was carried out  within the f ramework of  the Newtonian and l inear models,  the wave 
drag coefficient Cx for  the bodies which had been designed was then calculated by numerical  integration 
o f  the Euler  equat ions  using a mono ton ic  second-order  difference scheme with explicit construct ion 
of  the low-shock wave. 

Typical results of the calculations which were carried out are shown in Fig. 2 and in Table 1 for bodies with F 
= tg (30°)/6 = 1/(6~/3) ~ 0.096 in a flow of a perfect gas with x = 1.4 at differentp+/p.. The selected value o f f  
corresponds to exceedingly thick bodies. For example, a pseudo-optimal body which is symmetric with respect to 
x -- 0.5 and has a parabolic contour has Oi -- - O/=  30* and a half-thickness x0 = y(0.5) ~ 0.144 for such an F. In 
the case of bodies with a rear base, the cross-section of maximum thickness is attained forx which are either equal 
to or close to unity and a magnitude of x close to x0. 

The wave drag coefficients CxL, CxN, and Cxo for bodies with a rear base are given in Table 1. The optimal design 
of these bodies was accomplished within the framework of the linear and Newtonian models respectively, together 
with the design of the pseudo-optimal body without a rear base which was symmetric with respect to x = 0.5 and 
has been referred to above. Two values are given for Cx: that found numerically by integration of Euler's equations, 
which we refer to as the "exact" value, and (in brackets) that determined using the formulae of the Newtonian 
model for CxN and the linear model in the case of CxL and Cxo. In accordance with what has been said previously, 
Newtonian OCs were not constructed forp+/p~ = 0. The relative differences between Cxo and C~L are also given 
as percentages. These differences, like the Cx values themselves, were calculated using their exact and approximate 
values, that is, the values found using linear theory (the second of these is enclosed in brackets). Finally, the yr. 
values, which are optimal for the hnear and Newtoman models, are gwen m the last two rows. For thep /p, which 
have been considered, they depend weakly on the magnitude of the base pressure and increase as it increases. The 

+ 2 2 effect ofp /p. decreases as the Mach number M .  increases. This is natural sincepd(p.V.) = 1/(xM . )  and, when 
M .  ~ **, it tends to zero and the contribution to Cx, which is of the order of unity when p+/p., becomes much 
smaller than the contribution from the windward segment of the contour. 

Figure 2, in which the contours for different values of M .  that are optimal within the framework of the linear 
model for differentp+/fl. (the numbers near the curves) and y/x0, are shown by the solid curves, demonstrates the 
weak dependence ofp  /p. not only onyf, but also on the shape of the whole contour. The optimal contours (OCs) + 
in the case of the Newtonian model whenp /p. are shown by the dashed lines. Furthermore, the contour of the 
pseudo-optimal body without a rear base, which is independent of M** andp+/p., is represented in Fig. 2 by a solid 
line together with the OCs corresponding to M .  = 3. 

A considerat ion o f  Table 1 and Figs 2 show that, in spite of  the very large errors  which are obtained 
in when determining Cx using the approximate  models,  the OCs designed using these models  are close 
in shape and, especially, with respect  to the exact values of  Cx, which are also found to be significantly 

Table 1 

p+/p.. 0 1 2 

M. 3 6 12 3 6 12 6 12 

CxL x 104 254 125 85 1,~0 92 75 58 

(202) (74) (30) (98) (47) (23) (17) 
Cxlv × 104 140 90 71 59 

(53) (53) (53) (21) 
CxD x 104 448 296 253 448 296 253 296 

(393) (188) (93) (393) (188) (93) (188) 
ACxD(%) 76 137 198 220 222 237 410 

(95) (154) (210) (301) (300) (304) (1005) 
Yf'L x103 116 130 137 144 144 144 159 

Yf'N X 103 159 159 159 168 

65 
(15) 
63 

(45) 

253 

(93) 
289 

(520) 
151 

162 
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smaller than the exact values of Cx for pseudo-optimal bodies with a sharp rear edge. The closeness of 
the exact results for OCs designed using both models, even outside the range of their anticipated 
efficiency, is remarkable. 

4. THE O P T I M A L  C O N F I G U R A T I O N  WHEN p+ > p .  

According to what has been said at the beginning of this paper, rear bases are not a unique feature 
+ ,~ , ,  of the problems under consideration. I fp  > p**, then hollow and partially hollow check marks are 

optimal. This section is concerned with such "non-standard" configurations. 
As noted above, p ÷  > p**, first, in the case of sufficiently thick bodies when M** -> 1 and, second, 

when there are special actions in the base domain, such as a heat inflow in it, for example. Suppose 
that the second possibility is realized and, regardless of the magnitude o f f  ~> 0, p+/p. .  > 1 due to the 
additional action in the base domain. In this case, if the specified area F is reduced and approaches 
zero, then it would appear that concave extremals with the segment ii ° lying below the abscissa (Fig. 
lc) can ensure the required small values ofF. Such extremals are, however, forbidden for two reasons. 
First, as was established above, the OC in the problem under consideration cannot be concave and, 
second, if* forms the upper part of a symmetric body and, hence, cannot pass below the abscissa. The 
other possible outcome which follows from this (Fig. ld) in the form of a combination of the segment 
ii ° of the x axis with a convex extremal i° f  ° and with a corner point where they join is rejected by the 
condition of transversality at the point i °, which does not permit a corner point. 

The problem of de,.dgning the optimal contour whenp + > p .  and for sufficiently small F, which arises 
as a result, is solved iin the following manner. We begin with a simpler problem without specifying F. 
The necessary conditions for Cx to be a minimum in the case of this problem are obtained from those 
found earlier if one puts Ix = 0 in them. Within the framework of any of the models which have been 
described above, we construct the OC which, when Ix = 0, will be a straight line and, from condition 
(3.5) with the corresponding expression forp(a~), we determine its optimal angle of inclination a3 -- a~ F 
and the optimal yr. = tg a~/.. According to (3.9), in the case of the Newtonian model YF = tg ~/~ = qr  
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is a known function of the parameter  N from (3.8) and, in the case of the linear model, yp = tg Of. = 
L by virtue of (3.18). For any Of. > 0, the condition for an increase in Cx with a decrease in the length 
of the "body" is always satisfied. It is easy to see that the "check mark" that consists of the segment 
i f  °, which has been constructed in this way, and mirror reflection in the x axis provides the solution of 
the initial problem when F = 0. On filling the interior of the check mark in an arbitrary symmetric manner 
(Fig. le )  we obtain the solution of the problem with a specified area F for any value F -< F0, where F0 
is the area of the completely filled check mark with a rear b a se f f  °. The Lagrange multiplier Ix becomes 
non-zero and negative and the contours i f  ° become convex only when F > F0. 

Graphs ofF0 against N from (3.8) (the upper family of curves) and against L from (3.18) (the lower 
family), that is, against the similarity parameters which are obtained in this problem in the Newtonian 
and linear models as well as against M** for a perfect gas with × = 1.4 are shown in Fig. 3. The curve 
calculated using the Newtonian model is represented by the dashed line and that calculated using the 
linear model is represented by the dot--dash line. The relations calculated using the exact formulae for 
a supersonic flow around a wedge with condition (3.13) at the end po in t f  ° of its contour are represented 
by the continuous curves. When there are no additional isoperimetric conditions, the contour of the 
optimal two-dimensional configuration is close to a straight line [4, 5] and, according to what has been 
said earlier, condition (3.13) holds at its end point and in the approximation of the complete system 
of equations of  an ideal gas. Hence, the check marks which are obtained in this way (with the F0 
corresponding to them) can be considered as a solution of the same variational problem in a formulation 
which is close to the exact formulation. It can be seen from the behaviour of the upper family of curves 
in Fig. 3 that, as M~ increases, N becomes a similarity parameter  not only in the Newtonian approxi- 
mation but also in the almost exact approximation. Unlike this, L is not a similarity parameter. 

As has already been noted, the extremal constructed in the Newtonian model (in this case it is a segment of a 
straight line) is optimal if, according to [2], q ---- tg O --- tg 0p ~< 1 in it. By virtue of (3.9), q/~ = 1 when N = 1. F0 
= 0.5 corresponds to this case and, by virtue of (1.3),p ÷ > 1 + p. ,  that is, the base pressure exceeds the magnitude 
corresponding to O = ~2. It can be shown that, for suchp ÷ and F ~ 0.5, a hollow or partially hollow check mark 
with tg Of. = 1 and with a vertical screenf°,f + gives an optimal Cx in the Newtonian model which is negative here 
(thrust is created due to the largep÷). Its upper half is sketched in Fig. l(f). In addition to the length of the body 
and F ~< 0.5, it is necessary in such cases to specify the maximum height of the construction Yand, moreover, as 
it is easy to comprehend, the optimal ordinate of the upper point of the screen y~- = Y. I fF  > 0.5, a front face 
it ~, in which x = 0, again appears in the case of the optimal body on account of the constraint on its length. In this 
case, the rectilinear segment of the contour i°f ° with O = rd4 is shifted upwards (Fig. lg). 

5. C R I T I C A L  R E M A R K S  ON T H E  D E S I G N  OF C L O S E D  
O P T I M A L  B O D I E S  IN [5] AND [8] 

The outstanding role played by Chapman's paper [5] has already been noted above. It considered, in the linear 
approximation, a whole class of problems on the design of two-dimensional bodies which are symmetric with respect 
to they = 0 plane, sharpened in fTont and which realize a minimum in Cx for specifiedp +, length and either maximum 
thickness x in a previously unknown cross-section or the functional 

O.2 
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/ ' i  12.1~///j 

/ / / / f  
' ] / f  

/ 7  / /  f / / .  
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with n = 1, 2 and 3 and a = 0 and 1. If n = i and o = 0, then ;C = F. 
It has already been mentioned that a rear base was not treated as a segment of a boundary extremum in [5]. It is 

true that~r < 0 in the cases which were investigated in [5] with p+ < p/* by virtue of condition (3.18). The issue on 
the sign of the curvature of the extremal if* was therefore solved in [5] without invoking the inequality la ~< 0 that is 
one of the conditions for the optimality of a rear base as a segment of a boundary extremum which are missing from 
[5]. Moreover, in a problem with Z = F, the negative curvature of if* that is obtained due to the sign o f ) f  necessitated 
the choice of negative p which, in their turn, ensured that condition (3.6), missing from [5], is satisfied. The linear 
analogue of the second ,condition of (3.4), which, like (3.6), is also missing from [5], was also automatically satisfied 
when y/* < 0. Hence, necessary conditions for a boundary extremum in the problems which have been solved in this 
paper, but have not been mentioned or verified in [5], could not have led to erroneous results. Unfortunately, what 
has been said did not guarantee that there would be no errors in [5] which are not associated with the rear base. In 
attempting to compensate for the increment Ax which, when o = 1, appeared in the expression for ~ x  = 8/with I = 
Cx + I~, Chapman intrc,duced, in the case of a free x, a segmenty = x of length l ° into the required contour and then 
varied it as a whole by putting ~ = A~ in it. As a result, the coefficient of Ax was successfully made to vanish due to 
the choice of the "optimal" length l °. This, of course, is incorrect because the variations ofy  are free in the segment 
indicated. In fact, when g ~ 0, the ordinate of the extremal if* attains a maximum equal to x either at the point f* or 
at the internal corner point d. Taking account of this pact also gives the correct solution of problems with o ~ 0. 

The shortcomings which have been noted as well as the lack of any confirmation in [5] of the advantages with 
respect to Cx obtained 1in the linear approximation using more exact methods hardly explain the reason why the 
extremely efficient results in this paper were not published in the periodical press. 

It has been emphasized more than once above that a failure to understand the reason for the appearance of a 
rear base is a shortcoming of almost all publications associated with the optimal design of dosed bodies. In this 
sense, Large's paper [8], which has already been mentioned, is also extremely significant. In that paper, a rear base 
was introduced during the solution, in the Newtonian model approximation, of the design problem for an axially 
symmetric body which has a minimum wave drag coefficient Cx for a specified volume F and area t2 of the windward 
part of the surface, but where there are no constraints on the length and the radius. The "optimal" bodies with a 
rear base designed in [8] as a function of the dimensionless parameter f -- F/I)  3/2 turned out to be sharpened or 
blunt (with S'i = 0o), and their wave drag coefficient is positive and only vanishes when f = 0. 

Without confining ot~:selves to the axially symmetric case, we show that the bodies designed in [8] are not optimal 
as, with a free length and a free half-height or radius in a problem with specified F and t2, it is possible to design 
as many bodies as may be desired with Cx ~ 0 and Co = Cx/x l÷v ~ O. Henceforth, v = 0 in the two-dimensional 
case and v = 1 in the a~fally symmetric case, x is the previously unknown half height or radius of the mid-section, 
all the linear dimensions, including the length of the body and x are made dimensionless by reference to f~l/(l+v), 
and Cx by reference to ft. When account is taken of the conversion to dimensionless quantities which has been 
adopted and the determination in the Newtonian model (1.3) of the "washed" surface, apart from unimportant 
positive factors, we have 

t yl+Vd x l = l !  yV~l+y2(l+signy)dx,  f = f  (5.1) 
0 

yVy3 
c x = l !  1 - ~ ( 1  +signy) dx 

where, as previously, the origin of the system of coordinates (of the cylindrical coordinates when v = 1) is placed 
at the leading point of the body. 

Suppose that l I is the length of the windward part of the body, 12 = l - l I is the length of the leeward part of the 
body and y = xyl, 2(Xl, 2) are the equations of their contours with xl = X/ll and x2 = (x - ll)/12. In accordance with 
this, p1 -= dyl/drl >t 0 andS2 --- dy2/dx2 <~ O. Formulae (5.1) now take the form 

,~3+v 
I = xVllkl,  f = xl+V(llk2 +/2k3), C x = - - k  4 

" l ?  

kt = J Y dXl k2.3 I I+v-- , = Yl.2 axl.2 (5.2) 
0 0 

k4 =~ 1+1~,12 ' ~,ll J 

where the first (second) subscript from the right correspond to the first (second) subscript in the formula for k2, 3. 
We next select a quite arbitrary functionyl(xl) which increases monotonically from 0 to 1 and a functiony2(x2) 

which decreases monotonically from 1 to 0 when x L 2 • [0, 1] and we direct x to zero. Then, by virtue of the first 



810 A . N .  Kra iko  and D. Ye. Pudovikov 

condition from (5.2) in the principal order with respect to x as x ~ 0, we shall have Ii = 1/(kl0ZV). Henceforth, 
kno = kn when e = 0. When account is taken of the expression obtained for ll, we conclude that the combination 
of x and ll occurring in formula (5.2) when x ~ 0 behave in the principal orders with respect to x as: e = 
k120 x2(l+v) ~ 0, x~+Vl~ = x/kao ~ 0 and x~+V/l~ = k~0 x30+v) ~ 0. Hence, the first term in the formula fo r f  as well as 
C x = k20k40 xa0+v) and Co = k20k40 x2(l+v) simultaneously tend to zero. The specified value o f f  is preserved here 
if the length of the leeward part is taken as being equal to/2 = f/(k3o'Cl+v). The values of kno depend on the choice 
of the functions Yl, 2 which gives an infinite set of bodies with Cx and Co which tend to zero, that is, which are 
smaller than the finite Cx and Co of the "optimal" bodies in [8]. 

6. O N  T H E  D E S I G N  O F  O P T I M A L  B O D I E S  O F  A S P E C I F I E D  L E N G T H  
I N  A V I S C O U S  G A S  O R  L I Q U I D  S T R E A M  

A p p r o x i m a t e  local mode l s  have  been  used in our  investigation and, moreover ,  friction forces  have 
been  ignored.  As  far  as the use of  m o r e  accurate  models  is concerned,  there  is no need  to expect  any 
substantial  changes of  a fundamen ta l  na ture  in the case of  a possible quanti tat ive correction.  As  regards 
the effect  o f  viscosity, it is necessary to distinguish the opt imal  design of  bodies  in a viscous supersonic  
flow and bodies  in a flow of  a viscous gas or  a viscous incompress ible  liquid which does  not  give rise to 
even local supersonic  zones. In the first case at high Reynolds  numbers  when  friction forces  can be 
calculated in the boundary- layer  approximat ion ,  their  addit ion to the wave drag  while reducing the 
advantages  (with respect  to the  total  drag) of  a body  with a rear  base compa red  with bodies  with a sharp  
trailing edge does  not  affect  the type of  opt imal  configuration.  This  is due to the fact that,  in such 
situations, the project ion on to  the x axis of  the integral  of  the friction forces  acting on the body,  while 
being weakly  d e p e n d e n t  on the fo rm of  the contour ,  is de te rmined  mainly by its length. T h e  existence 
of  a bounda ry  layer, as is well known [14], increases p+  which, in its turn, leads to an increase  in the 
size of  the rea r  base. In  the second case, when  there  is no wave drag, the issue on the advisability of  
introducing rea r  base  requires  fur ther  investigation. Nevertheless ,  in solving p rob l ems  concerning the 
opt imal  design of  bodies  of  fixed length in a flow of  a viscous gas or  a viscous incompress ib le  liquid, 
the possibility of  the a p p e a r a n c e  of  a rea r  base  in the op t imal  con tour  must  necessari ly be  provided in 
advance.  The  results o f  exper iments  in [16] also conf i rm the fact that  the in t roduct ion of  a rea r  base 
can substantial ly improve  the force characterist ics of  a body  a round  which a flow occurs.  
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